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Abstract  

Color gamut characterization is an essential step in the ICC 
profile generation for imaging devices. It is also needed as 
part of evaluation and comparison of image quality 
achievable by different imaging systems. A novel 
technique is presented for characterizing the color gamut of 
an imaging device via ray tracing in the CIELAB color 
space. Initially, the convex hull of the set of measurement 
points is computed in the device space. Each of the 
resulting simplices in the convex hull structure has a set of 
CIELAB data triples associated with its vertices. The 
"local" convex hull is computed for each of those sets 
separately in CIELAB. The convex hull triangles are then 
subjected to a ray tracing procedure aimed at 
approximating the maximum achievable chroma for a set 
of pairs of L and hue angle values. For the purpose of the 
device profile generation, this set is derived from the set of 
grid points in the PCS (profile connection space) that have 
to be mapped to the device space. It is shown that the new 
method characterizes the gamut surface and volume better 
than the conventional technique based on computing the 
"global" convex hull of the measurement data points in 
CIELAB. 

1. Introduction 

A color gamut is a region in a color space, containing 
colors reproducible by a given imaging device or present in 
a given image. Color gamut characterization is an essential 
part of device characterization, a process that determines 
the rules of color reproduction by a given device. In 
particular, it is needed as a step of the ICC profile 
generation. (For the details on device characterization by 
means of the ICC color profiles, we refer the reader to Ref. 
[1].) Color gamut characterization is also useful for 
evaluation and comparison of image quality achievable by 
different imaging systems, gamut visualization, and gamut 
volume calculation. 

For the digital imaging devices that specify the 
amounts of colorants to be combined in a given pixel in 
terms of discrete values (say, integers) from finite ranges, 
the notions of the gamut boundary and gamut volume are 
merely useful abstractions, as the actual gamuts have gaps 
that are ignored. Furthermore, for an analog imaging 

device with a solid-volume gamut, an infinite number of 
color patch measurements would be needed in order to 
reconstruct the gamut boundary exactly. Approaches to 
approximate reconstruction of the gamut boundary are 
divided into two groups2: (a) geometric methods, which are 
based solely on a set of point coordinates in a device-
independent color space, such as CIELAB,3 and (b) 
colorant space methods, which use the device color space 
information as well.  

The most popular geometric method for color gamut 
characterization is based on computation of a 3D “global” 
convex hull of the in-gamut data points in CIELAB.4 (The 
convex hull of a set of points is the smallest convex set that 
contains the points.) For the real imaging systems, this 
method tends to overestimate the gamut volume, because 
the realistic color gamuts are non-convex. As the number 
of sufficiently uniformly distributed in-gamut data points 
increases, convergence to the “true” value corresponding to 
our notion of color gamut is not guaranteed. The 
information on implementation of the convex hull 
algorithms can be found in Ref. [5]. An attempt to improve 
the convex hull method was made by Balasubramanian and 
Dalal.6 For brevity, we will call their modification 
“concave” hull. It involves artificial “inflation” of the data 
set before computing its convex hull. As a result, interior 
points may be incorrectly identified as surface points, in 
which case the gamut volume will be underestimated after 
the appropriate “deflation”. Cholewo and Love2 introduced 
a more complicated geometric method based on the 
concept of alpha-shapes, mathematical generalizations of 
the convex hull. The resulting gamut shape and volume 
depend on the value of a special parameter α that the 
authors of the method recommended to determine 
experimentally for each given imaging system. The 
deficiencies of the geometric methods are due primarily to 
their fundamental lack of the device space information. 
Their primary advantage is the ability to handle the task for 
the systems, for which the device space data is unavailable. 
However, this advantage loses its value if there is a need to 
complete the device characterization afterwards.  

The colorant space methods assume that each surface 
point in the device-independent color space can be 
achieved by combining the colorants so that at least one of 
the device space coordinates attains its minimum or 
maximum value. This is a reasonable assumption for the 
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printing processes that utilize three or more colorants. 
Indeed, for any given point inside the device space gamut, 
we are very likely to find three colorants such that (a) 
addition of a sufficiently small amount of any of these 
colorants does not bring us to the same point in the device-
independent space as subtraction of another small amount 
of that same colorant, and (b) the vectors tangential to the 
corresponding trajectories in the device-independent space 
form a basis in it, so there exists a radius so small that any 
point within this radius from the location of the given point 
in the device-independent space can be reproduced by 
adjusting the amounts of these colorants appropriately. 
However, as we have already pointed out, an actual 
imaging device may be unable to control the amounts of 
colorants with arbitrary precision, so the given point is not 
100% guaranteed to map to an interior point in the device-
independent space. Braun and Fairchild7 considered the 
limited case of three colorants and stated that, if the gamut 
data were represented as a 3D wire-frame mesh in 
CIELAB space, some type of estimation process would be 
required to extract a slice profile of the gamut surface for a 
given hue angle 

h = arctan(b/a).      (1) 

(In this paper, the letters ‘L’, ‘a’, and ‘b’ denote the 
CIELAB coordinates also known as L* (lightness), a*, and 
b*3,7) Braun and Fairchild further suggested that this 
estimation process might involve a series of ray tracing 
steps where the gamut intersection points would be located 
for a series of L values for the given hue angle. They did 
not actually implement the ray tracing approach. Instead, 
they preferred to project the data on the Lh plane. They 
subsequently looked up or interpolated values from the 
resulting 2D matrix. In the past, when there were more 
than three colorants involved, the gamuts of the three-
colorant subprocesses were computed and then their union 
was taken to be the gamut of the process of interest.8 The 
problem with this approach is that some surface points can 
only be achieved by applying more than three colorants 
simultaneously. 

In the next section of this paper, a new, general 
colorant space method for color gamut characterization via 
ray tracing is presented. Section 3 will describe application 
of the ray tracing method to device profile generation.  

2. Gamut Characterization via Ray Tracing 

Let N be the dimensionality of the imaging device space, 
N≥3. The convex hull of a set of measurement points in 
this space consists of (N-1)-simplices, N vertices per 
simplex. Each of these vertices has a CIELAB data triple 
associated with it. For each (N-1)-simplex, we take the set 
of data triples associated with its vertices and compute the 
“local” convex hull in CIELAB. CIELAB is a 3D color 
space, so the elements of the local convex hull structures 
are triangles. One of these triangles is shown in Figure 1. It 
is defined by three data points in CIELAB: (L1,a1,b1), 
(L2,a2,b2), and (L3,a3,b3). For the purpose of color gamut 

characterization, all such triangles with positive areas will 
be subjected to a ray tracing procedure as follows. 

 
Figure 1. Ray tracing in CIELAB 

 
First, a set of (L,h)-pairs is chosen so that the value 

ranges of L and h are sampled sufficiently well. For 
example, we may look at all combinations of L=0,1,…,100 
and h=0°30’,1°30’,…,359°30’. For each value of h, the 
values of a and b are computed so that Eq. (1) is true. The 
resulting CIELAB point (L,a,b) for one of the (L,h)-pairs is 
shown in Fig. 1.  

Let the symbol ‘T’ denote transposition and consider 
three vectors x1, x2 and x3 defined by the equation 

xi = [Li ai bi]
T,      (2) 

where i=1,2,3. The vector product (cross-product) of the 
vector differences (x3-x2) and (x1-x3), 

n = (x3-x2)×(x1-x3),      (3) 

is the normal to the plane P defined by (L1,a1,b1), (L2,a2,b2), 
and (L3,a3,b3). 

For any point (L0,a0,b0) not coinciding with the point 
(L,a,b), we can find all points of intersection of P and the 
straight line R that connects (L0,a0,b0) and (L,a,b). In order 
to achieve that, we define the vector 

v = [L-L0 a-a0 b-b0]
T.      (4) 

and observe that if the scalar product <n,v> is equal to 0, 
then R is parallel to P. If this is the case and the volume of 
the tetrahedron defined by its vertices (L0,a0,b0), (L1,a1,b1), 
(L2,a2,b2), and (L3,a3,b3) is greater than 0, then the 
intersection of R and P is empty. If R is parallel to P and 
the volume of the tetrahedron is equal to 0, then we should 
solve a ray tracing subproblem on the plane P, which 
turned out to contain R. Let R’ be the ray emanating from 
(L0,a0,b0) and passing through (L,a,b). We find all points of 
intersection of R’ with the sides of the triangle defined by 
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(L1,a1,b1), (L2,a2,b2), and (L3,a3,b3). If any such points exist, 
we locate among them the closest one to (L0,a0,b0) and the 
farthest one from (L0,a0,b0). Finally, if R is not parallel to P, 
then the intersection of R and P is a single point (L’,a’,b’), 
and this case is illustrated in Fig. 1. Let’s define  

u = [L1-L0 a1-a0 b1-b0]
T     (5) 

and compute 

t = <n,u>/<n,v>.      (6) 

Then  

L’ = L0+t(L-L0),      (7) 

a’ = a0+t(a-a0),      (8) 

b’ = b0+t(b-b0).      (9) 

Now let’s check if the intersection point is inside the 
triangle. Let 

 x’ = [L’ a’ b’]T,      (10) 

 n12 = (x2-x1)×(x’-x2),     (11) 

 n23 = (x3-x2)×(x’-x3),     (12) 

  n31 = (x1-x3)×(x’-x1).        (13) 

 
The intersection point (L’,a’,b’) is inside the triangle 

defined by its vertices (L1,a1,b1), (L2,a2,b2), and (L3,a3,b3) if 
and only if <n, n12> > 0, <n, n23> > 0, and <n, n31> > 0. If t 
> 0, then (L’,a’,b’) is also the point of intersection of the 
triangle and the ray R’. 

We set L0=L, a0=0, and b0=0 and observe that (L0,a0,b0) 
is now guaranteed not to coincide with (L,a,b). 
Furthermore, by inspecting the distances between (L0,a0,b0) 
and the intersection points found for the convex hull 
triangles, we can determine the maximum achievable 
chroma for our (L,h)-pair. We will denote this value as 

maxC (L,h) =
2

max

2

max ba + ,    (14) 

where (L,amax,bmax) is the farthest from (L0,a0,b0) point of 
intersection of R’ and a convex hull triangle. Similarly, we 
can compute 

minC (L,h) =
2

min

2

min ba + ,    (15) 

where (L,amin,bmin) is the closest to (L0,a0,b0) point of 
intersection of R’ and a convex hull triangle. 

Whenever at least one intersection point is found for a 
given (L,h)-pair, we add (amax,bmax) to the (initially empty) 
set of points that form the boundary of the color gamut 
slice at L. Moreover, if at least one intersection point is 
found for (L,h), but no intersection points exist for 
(L,h+180º), then (amin,bmin) is also added to the set of the 
slice boundary points. This is needed, because the point 

(L0,a0,b0) =(L,0,0) is not garanteed to be inside the gamut 
even if L is achievable. In particular, the “white” and 
“black” points of a realistic color gamut routinely deviate 
from the L axis in CIELAB. We assume that R’ exits the 
gamut no more than once. 

Figure 2 shows the color gamut slices at L=50 
computed from the measurement data for the SWOP 
standard9 using three methods: convex hull, “concave” 
hull, and ray tracing. The CIELAB data is known for 928 
color patches of the standard IT8.7/3 target. 

 
 
 

 

Figure 2. SWOP color gamut slices at L=50 
 
 
Let ∆L and ∆h be the distances between the adjacent 

sampling points. In our example, ∆L=1 and ∆h=1º. Let 
C’min(L,h)=Cmin(L,h) if (amin,bmin) is a slice boundary point, 
C’min(L,h)=0 otherwise. Set the value of Cmax(L,h) to 0 
whenever R’ does not intersect any of the convex hull 
triangles. Then the CIELAB volume of the color gamut can 
be approximated by the formula 
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Precision of this approximation will improve as the 
device space is sampled sufficiently uniformly in more 
locations, ∆L→0, ∆h→0, and the measurement equipment 
gets better. It will then be limited by the device’s own 
variability. Table 1 provides the results of comparison of 
the values of several color gamut characteristics (including 
the CIELAB volumes) computed using three methods: 
convex hull, “concave” hull, and ray tracing. The CIELAB 
data for a set of 1012 coated PANTONE colors came from 
Ref. [10]. As you can see from the table, the conventional 
convex hull method overestimates the CIELAB volume of 
the SWOP color gamut by approximately 7%. If the 
number of (L,h)-pairs is doubled so that ∆L=0.5, then the 
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gamut volume computed via ray tracing becomes 307,197 
(instead of 307,195). I conducted an additional experiment 
on an electrophotographic imaging device with the gamut 
size considerably larger than that of SWOP. Having 
measured the same print of the 928-patch IT8.7/3 target 
twice on the same  day  with  the  same  GretagMacbeth  
SpectroScan spectrophotometer unit, I determined that the 
measurement-to-measurement volume difference was 
between 0.01% and 0.03% of the smaller of the two 
volumes involved in its computation for the three methods 
of interest. In the meanwhile, the reduction of ∆L from 1 to 
0.5 produced the volume difference for the ray tracing 
method within 0.012% of the smaller volume. This result 
suggests that the precision of the ray tracing method with 
respect to the gamut volume is comparable to the precision 
of measurement. The same print was immediately 
measured with another SpectroScan unit, and the resulting 
instrument-to-instrument volume differences turned out to 
be within 0.18% for the three methods. The volume 
difference between ray tracing and the “concave” hull 
method remained within 0.6%, and the convex hull method 
continued to overestimate the gamut volume by 
approximately 7%.  

  

Table 1. Comparison of Color Gamut Characteristics 
PANTONE SWOP 

convex hull “concave” 
hull 

ray 
tracing 

CIELAB volumes 
1,082,301 329,304 305,367 307,195 
Percentage of PANTONE colors inside gamut 

100% 31.9% 30.1% 29.5% 

L 

Areas of gamut slices at L=10,20,…,90 
10 1,669 121 119 115 
20 6,260 1,753 1,745 1,613 
30 10,743 4,115 4,046 3,926 
40 15,238 6,260 6,072 6,016 
50 18,494 7,693 7,460 7,443 
60 19,290 6,599 6,054 6,192 
70 17,350 4,441 3,614 3,898 
80 12,990 1,901 1,419 1,465 
90 6,482 0 0 0 

The totals of the gamut slice areas above  
108,514 32,883 30,528 30,669 

 
 
 

3. Application to Device Profile Generation 

For the purpose of the device profile generation, the set of 
(L,h)-pairs for ray tracing is derived from the set of grid 
points in the PCS (profile connection space) that have to be 
mapped to the device space. This derivation is likely to 
involve lightness compression (uniform or non-uniform), 
as most gamut mapping algorithms start with it.11,12 The ray 

tracing method allows to determine which of the (L,h)-
pairs correspond to the CIELAB points outside the gamut. 
Morovic11 lists a significant number of color mapping 
studies where clipping is given preference over 
compression. Once a line along which the rest of the 
mapping is to be carried out is determined, ray tracing 
along that line offers a way to implement clipping. Indeed, 
knowing the closest to (L,a,b) intersection point of the line 
of mapping and a convex hull triangle, it is straightforward 
to approximate the device space solution by means of 
interpolation, as the device space coordinates of the 
vertices of the closest triangle are known. Mapping of the 
interior points for the cases of CMY and CMYK printing 
can be performed as described by Hardeberg and Schmitt.13  

4. Conclusions 

A new method for color gamut characterization was 
introduced. It characterizes the gamut surface and volume 
more precisely than the conventional technique based on 
computing the convex hull of all measurement data points 
in CIELAB. The new approach involving ray tracing on 
the set of “local” convex hulls is useful for generation of 
device profiles. 
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